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produced will be randomly distributed inside the 
crystal. When the faults are able to arrange themselves 
in a regular fashion, a well ordered polytype is pro- 
duced; otherwise they are retained as faults in the 
structure and manifest themselves as streaks between 
reflections on the X-ray photographs. 

In the dendrites grown in an argon atmosphere 
using analar grade CdI2, some higher polytypes were 
observed and the streaking, too, was observed in 9% 
of cases (Kumar & Trigunayat, 1990). Both higher 
polytypes and streaking were eliminated when the 
charge material was well purified by zone refining 
and the argon atmosphere was replaced by vacuum. 
Now, when Pb ions are introduced in the CdI2 struc- 
ture as impurities, both polytype formation and 
streaking are again observed. This clearly establishes 
the role of impurities, including lead, in the formation 
of polytypes in CdI2 crystals. 

Arcing of the reflections arises from the arrange- 
ment of edge dislocations into small-angle tilt boun- 
daries. Like streaking, it has been observed in just 
7% of cases in the present work which means that 
the density of the dislocations produced in the struc- 
ture was low. 

In the earlier work it was found that the melt-grown 
CdI2 crystals doped with PbI2 unusually required long 
exposure time (~-8-10h) to produce well exposed 
X-ray photographs compared with the usual exposure 
time of nearly 1 h for the undoped CdI2 crystals 
(Tyagi & Trigunayat, 1988). It was argued that when 
the large-sized Pb 2÷ and I- ions (ionic radii 1.20 and 
2.16/~, respectively) occupy the vacant octahedral 
voids present in the CdI2 structure, local displace- 
ments are produced which lead to weakening of the 
X-ray reflections (Vainshtein, Fridkin & Indembom, 
1982). However, in the present case of PbI2-doped 
dendritic crystals, the time required for producing 
well exposed X-ray photographs was the same as for 
the undoped CdI2 dendritic crystals, viz about 1 h. It 
follows that no such local displacements are produced 

in the present vapour-grown dendritic crystals, the 
reason for which may be the following. In the melt 
growth, when the melt solidifies in the growth cham- 
ber, the substituted Cd 2÷ ions and the liberated I- 
ions cannot escape and are therefore compelled to 
accommodate themselves at suitable positions in the 
host structure. This enfored entry of the large I- ions 
(ionic radius = 2.16 A) causes excessive local distor- 
tions and hence large local displacements in the struc- 
ture. No such constraints exist in vapour growth, so 
the I- ions are free to escape into the surroundings. 
They may also combine with the substituted Cd 2÷ 
ions to form CdI2 molecules, which may deposit 
elsewhere in the growth chamber. 

One of us (BK) expresses his gratitude to S. Mehdi 
and K. Singh for helpful discussions. He is indebted 
to the University Grants Commission, India, for 
financial support. 
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Abstract 

The frozen phonon technique is introduced as a 
means of including the effects of thermal vibrations 
in multislice calculations of CBED patterns. This 

technique produces a thermal diffuse background, 
Kikuchi bands and a Debye-Waller factor, all of 
which are neglected in the standard multislice calcula- 
tion. The frozen phonon calculations match experi- 
mental silicon (100) CBED patterns for specimen 
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thicknesses of up to at least 550 A. The best-fit silicon 
r.m.s, vibration amplitude at near room temperature 
was determined to be 0.085(5)/~. As an independent 
check of validity, a comparison of calculated CBED, 
experimental CBED and electron energy loss spec- 
troscopy (EELS) data was also performed. The frozen 
phonon technique provides an improved theoretical 
basis for the simulation of CBED and therefore 
annular dark field scanning transmission electron 
microscope imaging. 

(1) Introduction 

Convergent-beam electron diffraction (CBED) is 
widely used for microcharacterization (Steeds, 1983; 
Eades, 1988). The most common application is to 
identify known structures and their orientations, but 
CBED has also been used to determine accurate 
unit-cell dimensions (Jones, Rackham & Steeds, 
1977), structure symmetries (Goodman, 1975; 
Tanaka, Saito & Sekii, 1983) and even atomic posi- 
tions (Vincent, Bird & Steeds, 1984). Strain fields 
around defects (Fung, 1985; Carpenter & Spence, 
1982), specimen thicknesses (Kelly, Jostsons, Blake 
& Napier, 1975; Kirkland, Loane, Xu & Silcox, 1989), 
ionicity (Zuo, Spence & O'Keeffe, 1988) and the 
phase of complex atomic structure factors (Zuo, 
Spence & H¢ier, 1989; Bird, James & Preston, 1987) 
have also been determined. 

The sum of the large-angle scattering in the CBED 
pattern produces the annular dark field (ADF) scan- 
ning transmission electron microscope (STEM) 
image (Langmore, Wall & Isaacson, 1973), which has 
recently proven capable of resolving atomic structures 
with Z contrast (Pennycook, 1989; Pennycook, 
Jesson & Chisholm, 1990) at better than 2,~ reso- 
lution (Xu, Kirkland, Silcox & Keyse, 1990; Shin, 
Kirkland & Silcox, 1989). Three major features of the 
large-angle scattering are Kikuchi bands (Kikuchi, 
1928; Kainuma, 1955; Takagi, 1958), a thermal diffuse 
scattering (TDS) background (Hall & Hirsch, 1965) 
and a higher-order Laue zone (HOLZ) ring (Hirsch, 
Howie, Nicholson, Pashley & Whelan, 1977). Ther- 
mal vibrations generate the first two features and 
reduce the intensity of the third by a Debye-Waller 
factor (Debye, 1914). Since the intensity in the HOLZ 
ring may be a significant fraction of the ADF STEM 
signal (Spence, Zuo & Lynch, 1989), the signal may 
be sensitive to thermal vibration. There are sugges- 
tions that thermal vibrations can change the relative 
contrast of different elements in the ADF STEM 
signal (Wang & Cowley, 1989), which differs from 
the suggestion that the signal is simply related to the 
atomic cross sections (Pennycook & Jesson, 1990). 
Accordingly, understanding the effects of thermal 
vibrations seems necessary for correct interpretation 
of experimental images. Our previous work on simu- 
lating ADF STEM images (Kirkland, Loane & Silcox, 

1987; Loane, Kirkland & Silcox, 1988) did not include 
the effects of thermal vibrations. This paper presents 
an investigation of the effects of thermal vibrations 
in CBED as a first step toward exploring the effects 
in ADF STEM. 

Recently, thermal vibrations have been included in 
multislice calculations by assuming that the vibrations 
can be averaged to create an effective TDS potential 
(Wang & Cowley, 1989). In this case, both the elastic 
and the TDS potentials remain periodic and therefore 
only scattering at Bragg angles is permitted. 
Apparently, this technique does not produce a TDS 
background throughout reciprocal space,unless ad 
hoc random phases are introduced. 

A beautiful demonstration of the formation of 
Kikuchi bands by elastic scattering of highly localized 
inelastic events has been presented (Fan, 1989). In 
this multislice calculation, the elastic and inelastic 
wavefunctions are propagated independently through 
the crystal and then summed incoherently on the 
detector plane. However, this calculation does not 
explicitly include the generation of additional inelas- 
tic waves throughout the thickness of the crystal. 

It is possible to include thermal vibrations in multi- 
slice calculations such that TDS, Kikuchi bands and 
a Debye-Waller factor arise naturally. The basic 
approximation is that the electron/atom interaction 
occurs so rapidly that the atom may be considered 
stationary, i.e. the electron sees a snapshot of the 
atom frozen in mid-vibration. Each atom in the simu- 
lated specimen is offset by a small random displace- 
ment, typical of its vibration amplitude, and a stan- 
dard multislice calculation is performed. Each set of 
random displacements freezes one phonon configu- 
ration into the specimen. The calculation is then 
repeated and averaged (incoherently) over an 
ensemble of different phonon configurations. This 
technique is essentially a Monte Carlo integration 
over phonon configuration space, as discussed below. 

(2) Frozen phonon approximation 

Atomic vibration periods are on the order of 10 -13 S 
(Sinha, 1973; Mitra & Massa, 1982). The large-ampli- 
tude acoustic waves, which produce most of the 
atomic displacement, are many times slower. Classi- 
cally, a 100 keV electron is a point particle traveling 
at half the speed of light, 1.5 x 10 ~8 A s -~. If the elec- 
tron/atom interaction is limited to within a few 
hngstroms of the atomic nucleus, the interaction time 
is ~10 -4 vibration periods. In reality, the electron 
wavefunction is unlocalized along its direction of 
travel due to a small spread in the time of emission. 
The length of the wavepacket can be estimated with 
Heisenberg's uncertainty principle: AEAt>- h/2. 
Assuming a 0.25 eV coherent energy spread for a field 
emission tip, the emission time is ---2x 10 -~5 s, the 
wavepacket length is ~3 x 10 3/~ and the interaction 
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time is - 2  x 10 -2 vibration periods. Whether the elec- 
tron is treated classically or quantum mechanically, 
the electron/atom interaction is much shorter than 
the atomic vibration period and the vibrating atoms 
may be considered as frozen in place. 

STEM beam currents are on the order of 10 I° e s -~, 
so the average time between successive electrons pass- 
ing through the specimen is about 10 3 atomic vibra- 
tion periods. This delay is sufficiently large that the 
atomic displacements seen by successive electrons are 
essentially uncorrelated. The physical process of 
accumulating an experimental CBED pattern from 
millions of electrons, each of which has been scattered 
by an independent phonon configuration, can be con- 
sidered as a Monte Carlo integration. This treatment 
includes Bragg scattering and quasi-elastic phonon 
scattering but not inelastic scattering. 

The electron/specimen interaction can be 
described by an N +  1 particle wavefunction, 
aP'(k, Utot), where k is a three-dimensional electron 
wavevector and Uto t is a 3 N-dimensional vector denot- 
ing the displacement of N atoms from their lattice 
sites. The joint probability distribution for finding the 
electron at k and the atoms at Uto t is then I ~/'(k, Utot)i 2. 
By definition, this joint probability is the product of 
the probability of finding the electron at k given the 
atoms are at Utot, Pe(klutot) and the probability that 
the atoms are at Utot, ea(Utot). Allowing for arbitrary 
atomic displacements, the probability distribution for 
the electron (i.e. the electron intensi ty) , / ,  is given by 

l (k)  =J  dutotPe(klutot)P,,(Utot). (1) 

Various phonon dynamics models can be used to 
determine P,,(Utot). Multislice calculations can be 
used to determine Pe(klutot). Evaluation of the elec- 
tron intensity after the specimen yields the CBED 
pattern. This 3N-dimensional integral over all pos- 
sible phonon configurations is far too large to be 
calculated explicitly but a solution can be determined 
to any degree of accuracy with Monte Carlo 
integration. 

In principle, each atomic displacement arises from 
the vector sum of 3 N  normal modes of vibration 
evaluated at the atom site (Born & yon Karman, 1913; 
Willis & Pryor, 1975). Since the long-wavelength 
acoustic modes tend to have larger vibration ampli- 
tudes, the atomic displacements for neighboring 
atoms are slightly correlated. To find the correct 
atomic displacements, it is necessary to determine the 
amplitude, phase and polarization vector for each of 
the 3 N normal modes and then sum them at each of 
the N lattice sites. In general, the effort required to 
determine these quantities is tremendous and for the 
present the simpler Einstein model has been used. 

In the Einstein (1907) model, each component of 
every atomic displacement vector is an independent 
simple harmonic oscillator (SHO) and all the dis- 
placements are uncorrelated with each other. The 

energy eigenstate wavefunctions for the SHO, ~0,, as 
a function of displacement, u, are well known 
(Sakurai, 1985). By using Planck statistics (Reif, 1965) 
to determine the occupancy of each of the energy 
eigenstates, the probability distribution, PI, for each 
SHO displacement as a function of temperature, T, 
is given by 

o o  

~'. exp [-(n+½)hoJ/knT] ~0,,(u)] 2 

P,(u, T ) =  "=° , (2) 
o o  

~, exp[-(n+½)hto/knT] 
n = 0  

where to is the oscillator frequency. Substituting in 
the explicit form for the energy eigenstates and sim- 
plifying, one obtains a Gaussian, 

Pl(u, T)=[(~om/ zrh) tanh (hoJ/2knT)] ~/2 

x exp [-(oJm/ h )u2 tanh ( hoJ/2koT)], (3) 

where m is the oscillator mass. The Gaussian standard 
deviation is the r.m.s, atomic displacement, u . . . .  
along each component of the 3D displacement vector, 

u,,rms=[(h/2~om)coth(h~o/2knT)] ~/2 (4) 

and is often referred to as the vibration amplitude in 
this paper. The same distribution may be derived from 
other considerations (Maradudin,  Montroll, Weiss & 
lpatova, 1971). Experimental r.m.s, atomic displace- 
ment values are available in the literature for a limited 
selection of materials and temperatures (International 
Tables for X-ray Crystallography, 1974a). 

The Einstein model was originally used to describe 
diamond, a monatomic crystal. In multiatomic crys- 
tals, it is not clear how the r.m.s, atomic displacements 
for the different atoms are related. Since each atom 
is treated as an independent SHO, the oscillation 
frequencies in (4) could possibly be different for each 
site in the crystal. To resolve this issue exactly, one 
must resort to the more-sophisticated theories where 
the atomic vibrations are the sum of 3 N  normal 
modes. Unfortunately, no simple mass dependence 
can be extracted. The magnitude of the atomic dis- 
placement for the different atom types is different for 
the different normal modes and the relative ampli- 
tudes of the normal modes vary with temperature. 

The Einstein model approximates the complicated 
phonon frequency spectrum as a constant for all 
wavevectors. We apply this same approximation to 
multiatomic crystals. Since the frequency of oscilla- 
tion is constant, then by (4) the atomic displacements 
are proportional to 1/m~/2 where mi is the atomic 
mass of the atom at the ith site in the crystal. This 
approximation is no worse than the original Einstein 
approximation. A more accurate mass dependence 
may be found if the relative amplitudes of the different 
atom types are left as free parameters to be deter- 
mined from the experimental data. In this paper, the 
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distribution of the atomic displacements will be 
assumed to be a Gaussian with a r.m.s, displacement 
proportional t o  1/m~/2. 
P, ( u,, T) = exp [ - ½( u , /Ux Ms, )2]/(2 7rU2x rm~ ,),/2, 

U,,rmsi=A(T)/m~/2, 
(5) 

where A is a characteristic vibration amplitude. 
Except for simple systems (such as silicon) we lack 
experimental values for A and it must be determined 
experimentally. 

We define a phonon configuration as the entire set 
of all the random atomic displacements as shown 
schematically in Fig. 1. Since the atomic displace- 
ments are uncorrelated, the probability distribution 
for phonon configurations is the product of all the 
probability distributions for all the individual atomic 
displacements. The probability that the atom posi- 
tions are nto t i s  then 

Po(u,o,) 
N 

= F i l l  
i=1  j=x.,y,z 

exp[--½(UJUxrms,)2]/(27rUxr~s,)2 ,/2 , 

(6) 

where the j subscript denotes the three components 
of each atomic displacement vector. 

(3) Frozen phonon algorithm 

Monte Carlo integration is performed by averaging 
an ensemble of values of the integrand evaluated at 
a uniform random sampling of positions in the 
integration volume. The sampling is increased until 
the integral converges to the desired level of accuracy. 
The smoother the integrand is over the integration 
volume, the faster the convergence. 

We must evaluate the integrand of (1), 
Pe(k[utot)Pa(utot), at random positions in the 3N- 
dimensional volume of Utot space. A uniform sampling 
of Utot space would produce many positions far out 
in the tails of the Gaussian, Pa(uto0, which make 
small contributions to the integral. A more-efficient 
calculation is achieved by using Pa (utot) as the proba- 
bility distribution for the sampling positions in Utot 

g ...... 

Fig. 1. Schematic diagram of one frozen phonon configuration. 
All the atoms (solid circles) are frozen in mid-vibration at small 
displacements from their atomic sites (open circles). Other 
phonon configurations would have the atoms frozen at different 
random displacements. 

space and then evaluating only Pe(klutot) at those 
positions. In this case, each position contributes 
equally to the integral; there are just fewer positions 
located out in the tails of the Gaussian. Changing the 
distribution of sampling positions is a standard Monte 
Carlo procedure (Press, Flannery, Teukolsky & 
Vetterling, 1986) and corresponds to a change of 
variables in the integral. 

The frozen phonon algorithm is as follows: First, 
all the atoms in the simulated specimen are offset by 
random displacements as determined by the probabil- 
ity distribution, Pa(Utot), to create one phonon 
configuration. Second, a multislice calculation is per- 
formed to determine the CBED pattern, Pe(k[Utot) ,  
for that phonon configuration. These two steps are 
repeated and the CBED patterns are averaged over 
an ensemble of configurations until the desired level 
of accuracy is reached. A natural consequence of 
explicitly calculating the scattering from each phonon 
configuration is the inclusion of multiple elastic and 
TDS scattering to all orders. 

A CBED multislice calculation begins with the 
generation of an incident wavefunction on the 
entrance surface of the specimen. In this paper the 
Bragg discs do not overlap and the incident probe 
width is broad compared to the interatomic spacings. 
Therefore, the incident-probe position is irrelevant 
and will be assumed to lie at the origin. Then the 
probe is evolved through the specimen with the multi- 
slice algorithm which involves repeated scattering 
from a slice of atoms and propagation to the next 
slice. The essential relationship (Loane, Kirkland & 
Silcox, 1988) is given by 

~bi+l(X) = t,(x)[~,(x) ®p(x)],  (7) 

where ~'i is the electron wavefunction before the ith 
slice, t~ is the ith slice transmission function and p is 
the propagator function. This multislice algorithm 
has been described in detail elsewhere (Cowley & 
Moodie, 1957; Goodman & Moodie, 1974; Ishizuka 
& Uyeda, 1977; Kirkland, Loane & Silcox, 1987; 
Loane, Kirkland & Silcox, 1988). The intensity of the 
outgoing wavefunction (as a function of wavevector) 
from the final slice is the CBED pattern. The CBED 
multislice calculation is valid for relatively thick 
specimens and includes the effects of dynamical 
diffraction, channeling, scattering to fractional Bragg 
angles, HOLZ scattering and arbitrary specimen 
structure, provided that sufficient computer resources 
are available. 

The simulated specimen is composed of a stack of 
slice transmission functions (slices), each of which 
represents a single layer of atoms. At first glance, the 
frozen phonon technique appears to require the calcu- 
lation of a multitude of different slices to describe all 
the atomic displacements in the ensemble of specimen 
phonon configurations. However, a shortcut is pos- 
sible within the Einstein approximation. Since the 



RUSSELL F. LOANE, PEIRONG XU AND JOHN SILCOX 271 

random atomic displacements in one unit cell do not 
depend on the random displacements in any other 
unit cell, rearranging the unit cells produces a 
different but equally valid phonon configuration. 
Randomly reordering unit cells enables a few slices 
to appear as many different phonon configurations. 
In reality, normal modes of vibration extend 
throughout the entire specimen and unit cells cannot 
be reordered without destroying the correlations 
caused by long-wavelength phonons. Within the Ein- 
stein approximation the atomic vibrations are uncor- 
related, the shortcut is valid and any real correlations 
are neglected. 

In CBED multislice calculations, the slice trans- 
mission functions must contain many unit cells to 
determine the scattering at fractional Bragg angles. 
If the slice is shifted horizontally by an integral num- 
ber of unit cells, the electron wavefunction encounters 
a different set of random atomic displacements and 
the same slice appears to be a new slice with a different 
phonon configuration. Different random stacking 
sequences and random horizontal shifts produce 
different phonon configurations. The number of slices 
required to represent adequately the entire ensemble 
of phonon configurations increases as the number of 
unit cells per slice decreases. The validity of this 
shortcut is easily tested by increasing the number of 
slices used until the results converge to the desired 
level of accuracy. 

Given a random number generator (Press, Flan- 
nery, Teukolsky & Vetterling, 1986) the shortcut 
modification to the multislice algorithm of (7) is 
trivial. 

g/,+l(x)=t#(x-na-mb)[Oi(x)®p(x)], (8) 

where j, n and m are random integers and a and b 
are crystal lattice vectors perpendicular to the beam. 
The j random number selects a slice from a set of 
many ith slices which differ only by their random 
atomic displacements. Then the n and m random 
numbers determine the number of unit cells the slice 
is shifted horizontally. 

CBED patterns and the frozen phonon approxima- 
tion are described in terms of the electron wavevector, 
k. An equivalent form of the frozen phonon algorithm 
can be written in terms of k by Fourier transform- 
ing (8). 

~t)'i+l(k ) = [ T0(k) exp [-27rik.  (na+  mb)] 

® [ gri(k)P(k)], (9) 

where the upper-case functions in (9) represent the 
Fourier transforms of the corresponding lower-case 
functions in (8). Thus, the horizontal shift of the slice 
transmission functions can be accomplished in 
reciprocal space by multiplication with a phase factor 
which is easier to implement numerically. 

No modification of the slice transmission function 
generation is necessary but the atom position inputs 
must be changed to include the random atomic vibra- 
tion displacements. Given a characteristic vibration 
amplitude, (5) dictates the standard deviation of the 
Gaussian displacement distribution for each atom in 
the slice. A Gaussian random number (Press, Flan- 
nery, Teukolsky & Vetterling, 1986) is added to each 
component of every atomic position and then the 
slice transmission function is calculated normally 
(Loane, Kirkland & Silcox, 1988). We still calculate 
our slices from X-ray scattering factors (International 
Tables for X-ray Crystallography, 1974b) instead of 
electron scattering factors (Doyle & Turner, 1967) 
because the Mott (1930) formula ensures the correct 
asymptotic form for high-angle scattering. 

Within the Einstein approximation, the atomic dis- 
placements can be broken up into independent com- 
ponents and considered individually. For 100 keV 
electrons, the scattering is insensitive to small atomic 
displacements along the optical axis (z axis). The z 
component of thermal vibration gives rise to TDS 
and a Debye-Waller factor along kz, just as the x 
(and y) components do along kx (and ky). As shown 
below, the effects of vibration increase with kx and 
are extremely small for kx < 0.5 t~,- 1. Since the scatter- 
ing vector has a small kz component, even for the 
HOLZ scattering (kz <0-2/~-~),  the z displacement 
component has little effect. Only the projection of the 
atomic potentials along the z axis is used to create 
multislice slice transmission functions. The z dis- 
placement component is lost in this projection. The 
slice transmission functions and therefore the entire 
calculation only contain atomic displacements along 
x and y. 

(4) Calculation parameters and sampling 

The primary concern when performing a frozen 
phonon calculation is whether enough phonon 
configurations have been averaged to represent the 
ensemble adequately. Fig. 2 shows a series of CBED 
patterns calculated with increasing number of phonon 
configurations. If too few configurations are used, the 
intensity distribution of the CBED pattern contains 
too much random noise to provide much meaningful 
information. Good results can be achieved with just 
16 phonon configurations. 

In some cases, the symmetry in the CBED pattern 
can be used to reduce the random variation. For 
example, the CBED patterns in Fig. 2 could be (but 
were not) added to their four (116) plane mirror 
images, doubling their signal-to-noise ratios. Such an 
approach has the danger of forcing an incorrect sym- 
metry on the pattern. 

All CBED patterns displayed in this paper 
have been logarithmically transformed in order to 
bring out their low-intensity features. The intensity 
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Table 1. The resolution and extent in real and 
reciprocal space of  the calculation are determined by 
the number of  pixels and the extent of the real-space 

arrays 

The maximum included scattering angle is the radius of  the usable 
portion of  the reciprocal-space array after band width limiting. 

Nx, Ny Array dimensions 512 pixeis 
nx, ny Number of unit cells 6 cells 
X, Y Real-space array extent 35.2 ,~, 
X~ N~,, Y~ Ny Real-space array resolution 0.069 ,~ 
AN,,/X, AN~/Y Reciprocal-space array extent 538 mrad 
A/X, ; t /Y Reciprocal-space array 1.05 mrad 

resolution 
A/3 min (Nx/X , Ny/Y) Maximum included scattering 179 mrad 

angle 

displayed, I ' ,  is related to the original intensity, I, by 

I ' (k) = In [ 1 + Cl(k)//max], (10) 

where k represents the scattering angle and C = 3000 
was arbitrarily chosen as aesthetically pleasing. The 
calculated CBED patterns have also been clipped so 
that a close up of the most interesting portion of the 
pattern is displayed. 

A related sampling issue is whether the number of 
different slice transmission functions is large enough 
so that the shortcut (described above) is valid. To 
test the shortcut validity, identical calculations of 
indium phosphide were performed with sets of 1, 2 
and 4 slices which differed only in their random 
atomic displacements. To the level of accuracy pro- 
vided by 64 phonon configuration ensembles, there 
is no difference between using one slice transmission 
function and four. This result is not surprising since 
each slice contains 6 x 6 zinc-blende unit cells for a 
total of 72 equivalent sites per slice, which should be 
enough instances to represent a Gaussian distribution 
of atomic displacements. The effort to calculate four 
slices is relatively small and as long as they all fit in 
computer memory at once there is no additional cost 
in using four. Throughout this paper, we have used 
four slices (288 equivalent sites) in a random stacking 
sequence with random horizontal shifts to produce 
all the phonon configurations in the ensemble. 

As in any multislice calculation, the slice 
dimensions in pixels and ~ngstrfms must be chosen 
carefully. These choices dictate the extent (array size) 
and resolution (pixel size) of the calculation in posi- 
tion (real space) and scattering angle (reciprocal 
space) as summarized by the relations in Table 1. The 
reciprocal-space array must be densely sampled to 
represent adequately the fine structure of the CBED 
pattern and large enough to include the TDS and 
HOLZ ring after bandwidth limiting (Loane, Kirk- 
land & Silcox, 1988). These conflicting requirements 
result in a large number of pixels and therefore long 
calculation times. A single 512 x 512 pixel slice takes 
---2 s to calculate on a Convex 210 minisupercom- 
puter. Therefore, a 400 slice standard multislice calcu- 

lation takes ---13 min to calculate and a 16 configur- 
ation frozen phonon calculation takes --3-5 h. 

We have used a variety of I I I /V compounds* and 
silicon in the (100) orientation in our calculations. 
These specimens all have the same zinc-blende struc- 
ture and nearly identical lattice parameters, so one 
sampling test should apply to all. To test whether the 
slice dimensions were sufficient, 6 x 6 unit-cell calcu- 
lations at 512x512 pixels were compared to 9 x 9  
unit-cell calculations at 1024 x 1024 pixels which have 
larger extent and resolution in both real and 
reciprocal space. Calculations were performed with 
587 ,~, (400 slices) of untilted indium phosphide (100). 
The indium r.m.s, atomic displacement was 0.10/~ 
and the phosphorus displacement was 0.192/~. The 
incident probe modeled the Cornell VG-HB501 
STEM (100 keV) with the low-resolution pole piece 
(C~ =3-3 mm) at Scherzer focus (aap=8"18 mrad, 
A f =  1105/~). To the level of accuracy provided by 
64 phonon configurations in the ensemble, there was 
no difference between the two calculations for scatter- 
ing angles up to 160 mrad. Scattering in the range of 
160mrad to the bandwidth limit at 179 mrad was 
underestimated by the smaller calculation. 

Finally, the slice thickness must be sufficiently thin 
to be accurately treated as a phase object and to 
represent correctly the three-dimensional structure 
information in the HOLZ rings. All calculations pres- 
ented in this paper were performed with four slices 
per zinc-blende unit cell. Each of these extremely thin 
slices, < 1.5 ,~, contains only one plane of atoms. 

(5) Calculation results 

Calculations were performed to explore the effects of 
varying the thermal vibration amplitude. We expect 
the intensity of the Bragg scattering to decrease by a 
Debye-Waller factor as the amount of thermal vibra- 
tion is increased. Calculated CBED patterns in Fig. 
3 show that the intensity lost from the Bragg scattering 
creates a TDS background. Scattered intensities as a 
function of scattering angle for the same thicknesses 
are plotted in Fig. 4. These curves are the result of 
azimuthal integrations around circles of constant Ik[ 
in the CBED patterns of Fig. 3 and provide a more 
quantitative view of the same data. 

Without vibrations, there is essentially no scattering 
between the low-order Bragg beams and the HOLZ 
ring. As the amount of vibration is increased, intensity 
is shifted out of both the HOLZ ring and the low-order 
Bragg beams and into the TDS background. The r.m.s. 
atomic displacement for silicon is about 0.07/~ at 
room temperature (International Tables for X-ray 
Crystallograt~hy , 1974a). At large vibration ampli- 
tudes, 0-15 A, the HOLZ ring completely disappears. 
As the amount of vibration increases, the low-order 

* 3/5 compounds in IUPAC (1990) nomenclature. 
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Fig. 2. Phonon configuration series of CBED calculations performed for a 273 A (200 slices) thick specimen of untilted gallium 
phosphide (100). The number of phonon configurations averaged were (a) 1, (b) 4, (c) 16 and (d) 64. The slice dimensions were 
512 x 512 pixels and 6 x 6 unit cells, which is 32-7 x 32.7 A. The gallium r.m.s, atomic displacement was 0-08 A and the phosphorus 
displacement was 0.12 ~,. The incident probe modeled the Cornell VG-HB501 STEM (100 keV) with the low-resolution pole piece 
(Cs = 3-3 ram) and a small objective aperture (C~ap = 6.0 mrad) near optimum focus (Af= 600 A). 

Fig. 3. Vibration series of CBED calculations performed for a 407 ~, (300 slices) thick specimen of untilted silicon (100). The r.m.s. 
vibration amplitudes were (a) 0.00, (b) 0.03, (c) 0.07 and (d) 0.15 A. Each pattern is the ensemble average of 16 phonon configurations. 
The slice dimensions were 512x 512 pixels and 6 x 6  unit cells, which is 32.6x32.6 ~,. The incident probe modeled the Cornell 
VG-HB501 STEM (100 keV) with the low-resolution pole piece (Cs =3.3 ram) at Scherzer focus (t~ap= 8"18 mrad, A f =  1105 A). 

[ to face page  272 
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Fig. 5. Thickness series of CBED calculations performed for a specimen of untilted silicon (100). The specimen thicknesses were 
multiples of 100 slices: (a) 136, (b) 272, (c) 407 and (d) 543 A. The r.m.s, vibration amplitude was 0.07/~. Each pattern is the 
ensemble average of 16 phonon configurations. The slice and probe parameters were as for Fig. 3. 
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Fig. 8. Comparison of experimental and calculated silicon (100) CBED. Patterns (a) and (b) are low- and high-angle experimental 
patterns, (c) was calculated with the standard multislice algorithm and (d) was calculated with the frozen phonon algorithm. The 
standard calculation was generated for a 299/~, (220 slices) thick specimen. The frozen phonon calculation is the ensemble average 
of 64 phonon configurations and was generated for a 326 A (240 slices) thickspecimen and a 0.085 A r.m.s, vibration amplitude. 
Both calculated patterns were convolved with a small collector aperture function (1-6 mrad). The incident probe modeled the Cornell 
VG-HBS01 STEM (100keY) with the low-resolution pole piece (C=-3 .3  mm) near Scherzer focus (aap-7"5 mrad , A f =  1100A). 
The slice parameters were as for Fig. 3. 
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Fig. 10. Additional comparisons of experimental and calculated silicon (100) CBED for different specimen thicknesses. Patterns (a), 
(c) and (e) form one comparison for an estimated thickness of 217/~ (160 slices) and (b), (d) and ( f )  form another for a thickness 
of 543 A (400 slices). Patterns (a) and (b) are low-angle experimental patterns, (c) and (d) are high-angle experimental patterns and 
(e) and ( f )  were calculated with the frozen phonon algorithm. The calculation parameters were as for Fig. 8. 
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Bragg beam intensity decreases slightly but the 
weakest beams are lost in the TDS background. The 
distinctive features in the low-order Bragg-beam discs 
change slightly with increasing vibration amplitude, 
consistent with a small lengthening of effective extinc- 
tion distances. The relatively small change in the 
low-angle scattering is encouraging since multislice 
calculations without thermal vibrations have been 
used to model TEM for many years. 

Calculations were performed to explore the effects 
of varying the specimen thickness. As the specimen 
thickness is increased, the fraction of intensity in the 
TDS background rises. Calculated CBED patterns in 
Fig. 5 show the intensity distribution at a variety of 
specimen thicknesses. The azimuthal integrations 
plotted in Fig. 6 provide a more quantitative view of 
the same data. 

Faint Kikuchi bands can be seen in the TDS back- 
ground, presumably due to phonon scattering 
coupled with Bragg scattering (Kikuchi, 1928; 
Kainuma, 1955; Takagi, 1958). This calculation 
should include multiple Bragg and TDS scattering to 
all orders. As the atomic vibration amplitude is 
increased, the bands become more prominent and 
elaborate, but at large vibrations the fine structure 
fades away. The Kikuchi bands also become more 
intense and elaborate with specimen thickness, 
duplicating structures produced by increased vibra- 
tion at smaller thicknesses. Therefore, the Kikuchi 
band structure is an ambiguous measure of the speci- 
men thickness or r.m.s, vibration amplitude. 

The intensity in both the TDS background and the 
HOLZ ring increases with thickness, but their ratio 
remains roughly constant (Fig. 6). This ratio is very 
sensitive to the amount of vibration (Fig. 4). The 
features that depend most strongly on thickness are 
the peaks and valleys in the low-order Bragg beams 
(Fig. 5). These features are relatively insensitive to 
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Fig. 4. Logarithm of scattered intensity. The curves were deter- 
mined by azimuthally integrating the intensities of CBED pat- 
terns similar to those shown in Fig. 3, but with different vibration 
amplitudes. The r.m.s, vibration amplitudes were (a) 0.00, (b) 
0.05 and (c) 0.10A. 
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the amount of vibration (Fig. 3). In a comparison of 
experimental and calculated CBED patterns, it 
should be possible to determine the experimental 
r.m.s, vibration, almost independently of thickness, 
from the ratio of the TDS to HOLZ intensity. It should 
also be possible to determine the specimen thickness, 
almost independently of vibration amplitude, from 
the low-order Bragg beam features. 

One quantitative test of the algorithm and our 
implementation was to check whether the calculation 
produced the expected Debye-Waller factors. In the 
kinematic limit, the Bragg scattering of a monatomic 
crystal in the presence of thermal vibrations should 
decrease by a Debye-Waller factor 

2 2 2 l ( k ) =  lo(k) exp (-4~r k u . . . .  ), (11) 

where Io is the intensity scattered by a perfect (not 
vibrating) crystal. In frozen phonon calculations, the 
Debye-Waller factor should arise automatically from 
the random atomic displacements. The intensity in 
the HOLZ ring, k = 3.15 ~-~ = 117 mrad, is kinematic 
scattering for the thicknesses considered here. As a 
test of the calculation validity, the integrated HOLZ 
intensity was separated from the TDS background 
for a variety of vibration amplitudes and specimen 
thicknesses. As shown in Fig. 7, the HOLZ intensity 
in the frozen phonon calculations follows the Debye- 
Waller factor of (11) within an absolute error of 2% 
for thicknesses up to 543 A and r.m.s, vibrations up 
to 0.10 ,~. The perfect-crystal intensity, Io, varies with 
specimen thickness and was the only free parameter 
in this fit. 

(6) Experimental details 

Experimental CBED patterns and electron energy 
loss spectroscopy (EELS) spectra were taken with 
a 100 keV VG-HB501 STEM with a low-resolution 
pole piece (Cs = 3.3 mm) near Scherzer focus (Af= 
1100/~, aap = 7"5 mrad). Probe widths between 3 and 
10/~ were typically achieved. The energy resolution 
of the EELS spectra was < 1 eV. 

The CBED patterns were taken by holding the 
incident beam stationary and scanning the post- 
specimen electron intensity over a small (1.6 mrad) 
axial collector aperture. The detector was operated 
in pulse-counting mode, which has demonstrated 
single-electron counting, essentially no background, 
large linear dynamic range and insensitivity to scintil- 
lator degradation and afterglow. The detector signal 
was accumulated into an image by a VAX 3200 work- 
station (Kirkland, 1990) and stored on disk. This data 
acquisition technique has the advantage of permitting 
accurate absolute-intensity measurements over a 
dynamic range of 104, which was essential for a quan- 
titative comparison. The disadvantage is that the field 
of view is very limited and the signal-to-noise ratio 
and resolution in the CBED patterns are not ideal. 
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EELS spectra were taken from the same specimen 
position as some of the CBED patterns. A large 
(8.8 mrad) collector aperture was used to collect as 
much plasmon scattering as possible. The detector 
was again operated in pulse-counting mode and the 
spectra stored on the computer. 

The CBED pattern dimensions were 140x 
130 mrad at 256 x 256 pixels. Since the patterns were 
recorded serially, each pattern took 2.2 min to record 
with dwell times of 2 ms pixel -]. Though the Cornell 
STEM is equipped with an energy spectrometer, it is 
not possible to take energy-filtered CBED patterns 
at this time (due to insensitivity in the Grigson coil 
adjustment). Therefore, there is considerable inelasti- 
cally scattered intensity, particularl~ plasmon losses, 
present in the experimental CBED data. The EELS 
spectra range was 50 eV at 250 pixels and included 
the first (16.6 eV) and second (33 eV) silicon plasmon 
loss peaks. Spectra took 2-1 min to record with dwell 
times of 500 ms per pixel. 
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Fig. 6. Logarithm of scattered intensity. The curves were deter- 
mined by azimuthally integrating the intensities of the CBED 
patterns shown in Fig. 5. The specimen thicknesses were (a) 
136, (b) 272 and (c) 543 A. 
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Fig. 7. Integrated HOLZ ring intensities for various specimen 
thicknesses. The data points were determined by integrating the 
HOLZ peak intensity, less the TDS background, in the curves 
shown in Figs. 4 and 6. The specimen thicknesses were (a) 136, 
(b) 272, (c) 407 and (d) 543 A. 

Specimen drift of up to 10 A per minute can occur 
and the beam occasionally drifted to thicker or tilted 
regions. The action of changing from the small 
(CBED) to large (EELS) collector aperture shook the 
microscope slightly and also caused drift. Checks 
were made to determine whether the specimen had 
drifted during pattern and spectra acquisition. If so, 
the data were discarded and the experiment repeated. 

Multiple patterns and spectra were taken from the 
same point to prove that contamination did not 
seriously degrade the data. In the CBED pattern, 
contamination slightly increased the low-angle diffuse 
scattering. In the EELS spectra, contamination pro- 
duced a small additional plasmon peak at roughly 
22 eV. Neither of these effects changed the results of 
our analysis. 

Silicon specimens were thinned by grinding to 
20 p.m, ion milling until break through and dipping 
in HF to remove as much of any oxide or amorphous 
layers as possible. Ion milling was performed at 
liquid-nitrogen temperatures with 5 kV Ar + ions and 
an 18 ° incidence angle. The specimen was heated 
under vacuum in the microscope preparation cham- 
ber to drive off hydrocarbons and thereby minimize 
contamination under the beam. 

(7) Calculated and experimental CBED comparison 

An extension of our previous approach (Kirkland, 
Loane, Xu & Silcox, 1989) was used to match frozen 
phonon CBED calculations to experiment. The 
HOLZ to TDS intensity ratio and the features in the 
low-order discs were used to make the comparison. 
The match was performed with 64 configuration 
calculations at steps in thickness of 27.2/1, (20 slices) 
and steps in r.m.s, vibration amplitude of 0.01 ,~,, 
which set the error in the match to + 1 4 A  and 
+0.005 ~ ,  respectively. The patterns changed sig- 
nificantly with each step. Additional calculations with 
smaller steps and more phonon configurations should 
refine the match. 

One comparison between experimental silicon 
(100) CBED patterns, a frozen phonon calculation 
and a standard multislice calculation is shown in Fig. 
8. Note the close match between the frozen phonon 
calculation and the experiment in the Kikuchi band 
structure, the HOLZ ring intensity and the features 
in the low-order Bragg-beam discs. The standard 
multislice calculation only matches experiment in the 
low-order Bragg beams. 

The finite collector aperture width (1.6 mrad) blurs 
the features of the experimental CBED patterns. 
Before comparison to experiment, the calculated pat- 
terns were also blurred by a convolution with a top- 
hat function of the same diameter. The convolution 
improved the match of the features in the low-order 
Bragg beams and broadened the HOLZ ring but did 
not change our estimate of the specimen thickness or 
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r.m.s, vibration amplitude. Owing to an imbalance in 
the strength of the Grigson X and Y scan coils, the 
aspect ratio of experimental CBED patterns was off 
by up to 8%. The distorted aspect ratio was considered 
in all the subsequent analyses and has been corrected 
in the figures. 

The best fit for the frozen phonon calculation 
shown in Fig. 8 occurred with a 0.085 (5)A r.m.s. 
atomic displacement and 326 (14)/~ thickness. The 
r.m.s, vibration is larger than the 0.07/~* expected 
for room-temperature silicon and corresponds to a 
temperature of 470 K [by assuming 0.07/~ at 300 K 
in (4)]. This discrepancy appears too large to be 
attributed solely to beam heating of the specimen 
(Reimer, 1984b). It seems more likely that inelastic 
plasmon scattering, coupled with quasi-elastic and 
Bragg scattering (Batson & Silcox, 1983), is being 
included experimentally as additional TDS. An 
attempt to test this hypothesis with energy-filtered 
CBED is under way. 

The best fit.for the standard multislice calculation 
shown in Fig. 8 occurred with a 299 (14)/~ thickness, 
which is sJightly thinner than the best-match frozen- 
phonon calculation. The difference in thicknesses 
arises from a reduction in the Bragg scattering in the 
frozen-phonon calculation, due to the Debye-Waller 
factor, which increases the extinction distances 
responsible for the features in the low-order discs. If 
we apply the Debye-Waller factor of (11) to just 
the first-order Bragg (220) disc, k = 0 . 5 2 A  -~= 
19.3 mrad, we estimate a lengthening of extinction 
distances of about 7-5%. Since there is much multiple 
scattering between low-order Bragg beams, each with 
its own Debye-Waller factor, this estimate is very 
crude but it does account for the observed thickness 
difference. 

The match to experiment is not perfect. Fig. 9 shows 
a quantitative comparison between the azimuthally 
integrated intensity in the experimental and frozen 
phonon CBED patterns of Fig. 8. The vertical place- 
ment of these curves is arbitrary since the incident- 
beam current is not known. The match at high scatter- 
ing angles, >50 mrad, is very good. However, there 
is more diffuse scattering spreading the intensity in 
the experimental patterns at low angles than can be 
accounted for by thermal vibrations. The extra low- 
angle diffuse scattering can be attributed to scattering 
by plasmons (Reimer, Fromm & Naundorf, 1990) 
and possibly a thin oxide or contamination layer on 
the specimen, neither of which was included in the 
calculations. The faint broad bands running perpen- 
dicular to the Kikuchi bands in the experimental 
patterns may be the result of correlations between 
the vibrations of neighboring atoms (Honjo, Kodera 
& Kitamura, 1964; Komatsu & Teramoto, 1966), 

* See Note added in proof on p. 277. 

which are neglected in the simple Einstein model 
used here. 

Many additional matches were made at a variety 
of thicknesses. At no thickness did we notice any 
significant discrepancy between calculation and 
experiment other than the excess low-angle diffuse 
scattering mentioned above. Fig. 10 shows two addi- 
tional comparisons between experimental CBED pat- 
terns and the appropriate frozen phonon calculations 
for a thinner and a thicker region of the specimen. 
Fig. 11 shows a more quantitative comparison of the 
azimuthally integrated intensity in the experimental 
and frozen phonon patterns in Fig. 10. The excess 
low-angle diffuse scattering becomes less significant 
as the thickness is increased, which suggests that an 
amorphous layer on the specimen surface may be the 
source. The best fit for the patterns shown in Fig. 10 
occurred with exactly the same r.m.s, atomic displace- 
ment, 0.085(5) A,. The best-fit thicknesses were 
217 (14) and 543 (14)/~. 

(8) Comparison to EELS 

Since multiple plasmon scattering follows Poisson 
statistics (Reimer, 1984a), the ratio of the EELS 
spectrum intensity in the first plasmon-loss peak to 
that in the zero-loss peak equals the ratio of the 
specimen thickness to the plasmon mean free path 
(MFP). Assuming the specimen thicknesses deter- 
mined by CBED comparisons (as above) are correct, 
it is possible to estimate an experimental value for 
the plasmon MFP from the EELS spectra (Kirkland, 
Loane, Xu & Silcox, 1989). A comparison of this 
estimated MFP with other values in the literature 
provides an independent check of the validity of the 
frozen-phonon calculation. 

EELS spectra were taken with an 8.8 mrad collector 
aperture from the same positions as some of the 
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Fig. 9. Comparison of experimental and calculated scattered 
intensity. The curves were determined by azimuthally integrating 
the intensities of (a) experimental and (b) frozen phonon C BED 
patterns in Figs. 8(b) and (d), respectively. The vertical place- 
ment of the curves is arbitrary. 
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CBED patterns. Plasmon intensities were determined 
from the spectra by integrating under the zero-loss 
peak and first plasmon-loss peak at 16.6eV. The 
plasmon intensity ratio v e r s u s  the best-match thick- 
ness determined from the CBED comparison is plot- 
ted in Fig. 12. The slope of the straight-line fit indi- 
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Fig. 11. Comparison of  experimental and calculated scattered 
intensity. The curves were determined by azimuthally integrating 
the intensities of  (a) experimental and (b) frozen phonon C BED 
patterns in Figs. 10(c) through ( f ) .  The vertical placement of  
the curves is arbitrary. 

0.6 
( n  

0 
i , q  

N 0.4 

0 

o.z  

0.0 

, , w ! w , i ! i • w 

1 | 1 I * i i i i i I 

200  400  600 
C a l c u l a t i o n  T h i c k n e s s  in I 

Fig. 12. Ratio of  silicon first-plasmon-loss to zero-loss intensity 
for a variety of  specimen thicknesses. The thicknesses were 
determined by comparisons of  experimental and calculated 
CBED patterns similar to those shown in Figs. 8 through 11. 

cates that the plasmon MFP is 1207 (23)/~. This value 
agrees well with the experimental value of 1250 ,~ 
(8.5 mrad objective aperture, 10 mrad collector aper- 
ture) (Sarikaya & Rez, 1982) and the theoretical result 
of 1150/~, (parallel illumination, 6.5 mrad collector 
aperture) (Egerton, 1986). These numbers suggest 
that the frozen phonon calculation determines the 
correct specimen thickness to within the error of the 
known value for the silicon plasmon MFP. 

The fact that the straight-line fit does not go exactly 
through the origin is not surprising, considering ran- 
dom error in the data and the possible presence of 
contamination, oxide or amorphous silicon layers on 
the specimen (Carpenter & Jang, 1986). q'he fact that 
the vertical axis intercept at 10(6),~ is so close to 
zero is a good indication that the specimen is almost 
completely crystalline silicon. 

Our previous match between silicon (111) CBED 
and EELS (Kirkland, Loane, Xu & Silcox, 1989) did 
not include a Debye-Waller factor. At that time we 
were comparing the experimental CBED patterns to 
the standard multislice calculation which, as shown 
above, underestimates the specimen thickness. The 
net result is a systematic error which overestimates 
the plasmon MFP. If the previous plasmon MFP 
result, 1297 (25)/~ (8 mrad collector), is reduced by 
the crude estimate of 7.5% discussed above, the result, 
1199 (23)/~, agrees very well with our current work. 

The EELS comparison points out that, for all but 
the thinnest specimens, plasmon scattering is a sig- 
nificant effect. For example, at the 326/~, thickness 
shown in Fig. 8, 24% of the intensity at small angles 
has been scattered by plasmons. Since the CBED 
patterns were not energy filtered, this plasmon scat- 
tered intensity makes up a big fraction of the intensity 
in the experimental CBED patterns above. Even 
though plasmons scatter predominantly at small 
angles, coupled plasmon/phonon and plas- 
mon/Bragg scattering can translate inelastically 
scattered electrons to large angles. To a first approxi- 
mation, the plasmon scattering at large angles is pro- 
portional to the TDS background (Batson & Silcox, 
1983). This high-angle inelastic intensity is present in 
the experimental CBED patterns but is neglected in 
the calculations. Treating the high-angle inelastic 
scattering as additional TDS may be the reason that 
the estimated r.m.s, thermal vibration amplitude is 
larger than expected. 

(9) Discussion 

The validity of the frozen phonon technique is 
strongly supported by a comparison with experi- 
mental silicon CBED patterns. This technique 
naturally produces the Kikuchi band structure, TDS 
intensity, Debye-Waller factor and lengthened 
extinction distances, all of which are missing in the 
standard multislice calculation. The agreement with 



RUSSELL F. LOANE, PEIRONG XU AND JOHN SILCOX 277 

experiment is good for a variety of specimen thick- 
nesses over more than two orders of magnitude of 
intensity, which is about the precision of the atomic 
scattering factors. The best-fit r.m.s, vibration ampli- 
tude was 0.085 (5) ]k for a variety of specimen thick- 
nesses. This value is larger than the 0.07 ,~ determined 
at room temperature by X-ray scattering and may 
represent the inclusion of coupled inelastic/phonon 
scattering as additional thermal vibration. There is 
also additional low-angle diffuse scattering in the 
experimental CBED, which may be the result of plas- 
mon scattering or possibly a thin amorphous layer 
on the specimen. The silicon plasmon mean free path 
was estimated from the EELS spectra using the calcu- 
lation to determine specimen thickness. Comparison 
with mean-free-path results in the literature indicates 
that the frozen phonon calculation is accurate to 
within the error in the known value of the plasmon 
mean free path. 

The frozen phonon calculation is based on a rela- 
tively slight modification to the well established multi- 
slice algorithm. The Monte Carlo integration closely 
matches the physical process of electron scattering 
where millions of single electron diffraction patterns 
are summed incoherently to produce the average 
CBED pattern. Multiple thermal diffuse and Bragg 
scattering to all orders is automatically included in 
this calculation. Agreement with experiment indicates 
that appropriate random displacements of the atomic 
potentials produces a valid representation of the ther- 
mal equilibrium potential. 

The frozen phonon technique is an altemative route 
to the prediction of scattered intensities in the pres- 
ence of thermal vibrations, particularly at large 
angles. A numerically intensive calculation, based on 
a simple first-principles model, replaces more-compli- 
cated analytical treatments. Thus, this technique pro- 
vides an independent check of the validity of the 
elaborate chain of approximations present in more 
analytical approaches. As computational capabilities 
continue to increase, the shift from complicated 
analysis to numerically intensive first-principles 
models becomes more desirable. 

A primary motivation for developing this technique 
was to provide an improved theoretical basis for the 
calculation of ADF STEM images. At room tem- 
perature, TDS makes up most of the scattering in the 
range of angles which contribute to the ADF STEM 
signal. Even at temperatures near absolute zero, there 
is still significant vibration and TDS from the crystal 
zero-point energy. The frozen phonon calculation 
matches experiment very closely in the TDS, which 
justifies its use in the calculation of ADF STEM 
images. Since the ADF STEM signal is not usually 
energy filtered, the use of a larger r.m.s, thermal 
vibration may be an effective means of including 
inelastic scattering in ADF STEM calculations. The 
presence of strong TDS at lower scattering angles 

suggests that an inner ADF detector radius as small 
as 30 mrad may be best. Additional quantitative pre- 
dictions of the dependence of Z contrast on specimen 
thickness, defocus, objective aperture choice and 
detector geometry will be determined. 

Special thanks to E. J. Kirkland for his implementa- 
tion of the original multislice simulation and the 
STEM data acquisition system, to J. Krumhansl for 
his helpful discussion of frozen phonons and to M. 
Thomas for keeping the STEM working. This research 
was supported by the Department of Energy 
(DEFG0287ER45322). Calculations were performed 
at the Cornell Material Science Center computer 
facility. Funding for the purchase (DMR-8314255) 
and operation (DMR-8516616) of the UHV STEM 
was provided by the National Science Foundation. 

Note  added  in proo f  

Recent experiments and a better background treat- 
ment have yielded an improved estimate for the 
silicon r.m.s, vibration amplitude of 0.080(5) A. This 
new estimate agrees with the extremely accurate X-ray 
measurement of 0.0764(2)A by Aldred & Hart 
(1973). 
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On the Application of Phase Relationships to Complex Structures. XXIX. 
Choosing the Large Es 
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A b s t r a c t  

The set o f  large E s  t h r o u g h  wh ich  a s t ruc ture  is so lved  
by  direct  m e t h o d s  is u s u a l l y  chosen  by a conve rgence  
or c o n v e r g e n c e - d i v e r g e n c e  process.  This  process  
a ims  to give a s t rong  p h a s e - e x t e n s i o n  p a t h w a y  start- 
ing f rom a smal l  set o f  E s whose  phases  are k n o w n  
or a l loca ted  in some way.  Some t imes  sets o f r e f l e x i o n s  

* Now at University of Patras, Patras, Greece. 

0108-7673/91 / 030278-04503.00 

thus  o b t a i n e d  are p o o r l y  c o n d i t i o n e d  a n d  u n d e r  
t a n g e n t - f o r m u l a  r e f inement  even  in i t ia l ly  correct  
phases  will  degene ra t e  to r a n d o m n e s s .  A s imple  new 
a l g o r i t h m  has  been  d e v e l o p e d  wh ich  improves  the  
c o n d i t i o n i n g  of  the comple t e  set of  ref lexions  a n d  
the i r  r e l a t i onsh ips  a n d  is more  a p p r o p r i a t e  to cur ren t  
t rends  to s tar t  r e f inement  f rom a comple t e  set o f  
r a n d o m  phases .  A pa r t i cu l a r  fea ture  o f  this  a lgo r i t hm 
is tha t  it max imizes  the  m i n i m u m  n u m b e r  o f  re la t ion-  
sh ips  for  a n y  reflexion.  
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